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Lecture 20: November 11

Polarized Hodge modules. Today, we are going to look at the definition of po-
larized Hodge modules (on curves). Let X be a Riemann surface, for example a
smooth algebraic curve. Last week, we constructed two kinds of examples: Hodge
modules on X, coming from a polarized variation of Hodge structure on the comple-
ment of a discrete set of points; and Hodge modules on X with support at a point
x ∈ X, coming from a polarized Hodge structure. In general, we want to allow only
direct sums of these two kinds of examples: an arbitrary polarized Hodge module
on X should be the direct sum of an object that is generically a polarized variation
of Hodge structure, and objects that are polarized Hodge structures supported at
points. To have a good theory, we need a way to define this class of objects by
local conditions, so that we can check whether a given object is a polarized Hodge
module or not.

By analogy with polarized variations of Hodge structure, our objects will be
coherent D-modules with a filtration and a pairing. The Hodge theory conditions
will be implemented with the help of an auxilliary filtration called the V-filtration.

Let X be a Riemann surface, and denote by DX the sheaf of linear partial
differential operators on with holomorphic coefficients; if t is a local coordinate on
X, then this is just OX〈∂t〉, where ∂t = ∂

∂t . Also denote by DbX the sheaf of
distributions on X; both DX and its conjugate DX̄ act on DbX from the left, and
the two actions commute.

A polarized Hodge module is going to consist of a left DX -module M, an in-
creasing filtration F•M by coherent OX -modules, and a distribution-valued pairing
hM : M⊗CM→ DbX . Let me first spell out what this means. First, we want M
to be a coherent left DX -module; this is the same thing as an OX -module with a left
action by the tangent sheaf TX , subject to the commutator relation [ξ, f ] = ξ(f)
for any two local sections ξ ∈ TX and f ∈ OX . Next, we want each subsheaf FkM
to be a coherent OX -module, and we want the filtration to be compatible with the
action by DX , in the sense that

TX · FkM⊆ Fk+1M,

with equality for k � 0 locally on X. This means that the filtration is locally
determined by a finite amount of data. We also require that

M =
⋃

k∈Z
FkM

and that FkM = 0 for k � 0 locally on X. (When X is compact, this is the same
thing as saying that FkM = 0 for k � 0.) Lastly, the pairing

hM : M⊗CM→ DbX

should be sesquilinear over DX , meaning that

hM(ξm′,m′′) = ξ · hM(m′,m′′) and hM(m′, ξm′′) = ξ · hM(m′,m′′)

for local sections m′,m′′ ∈ M and ξ ∈ TX . On the right-hand side, ξ and ξ are
considered as differential operators, acting on the distribution hM(m′,m′′).

Now we need to single out the polarized Hodge modules among all the triples
(M, F•M, hM). As in the examples from last week, this can be done with the help
of an auxilliary local filtration, called the V-filtration. The first condition is the
definition is the existence of such a filtration. We require that every point x ∈ X
has an open neighborhood U ∼= ∆, with coordinate t, such that MU =M

∣∣
U

has a
decreasing filtration V •MU , indexed by R, with the following properties:
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(1) Each V α = V αMU is a coherent OU -module, and
⋂

α∈R
V α = 0 and

⋃

α∈R
V α =MU .

(2) The filtration is decreasing and discrete, meaning that V α ⊆ V β for α ≥ β,
and that there is some ε > 0 with the property that

V >α =
def

⋃

β>α

V β = V α+ε.

The jumps in the filtration therefore happen along a discrete subset of R.
(3) One has t · V α ⊆ V α+1 and ∂t · V α ⊆ V α−1, and t · V α = V α+1 for α� 0.

In particular, each subsheaf V α is preserved by t ∂t.
(4) The operator t∂t − α acts nilpotently on grαV = V α/V >α, which is a finite-

dimensional C-vector space.

It is not hard to see that there can be at most one filtration with these properties.
If such a filtration V •MU does exist on a neighborhood U of a given point x ∈ X,
we say that M admits a local V-filtration at the point x ∈ X.

Exercise 20.1. Show that t : V α → V α+1 is an isomorphism for α > −1, and that
∂t : grαV → grα−1

V is an isomorphism for α 6= 0. Prove that MU = DU · V −1.

For those of you who know something about D-modules, I should mention that
a V-filtration in the above sense exists if and only ifM is regular holonomic and if
the eigenvalues of the local monodromy transformation around any singular point
are complex numbers of absolute value 1. In particular, M is generically a vector
bundle with connection. Let us briefly discuss this important point.

Lemma 20.1. Let M be a coherent DX-module. If M admits a V-filtration with
the above properties at every point of X, thenM is generically a vector bundle with
connection.

Proof. The question is local, and so we can work on an open neighborhood U of
a given point x ∈ X. After replacing M by its restriction to U , we can assume
that M is a D-module on the disk ∆, and that a filtration V •M with the above
properties exists. Now I claim that

M
∣∣
∆∗

= V αM
∣∣
∆∗

for every α ∈ R. To see this, let m ∈ M be any local section defined on an open
subset of ∆∗. Then m ∈ V βM for some β � 0, and as long as k ≥ α − β, we
have tkm ∈ V αM. But now t−1 is holomorphic on ∆∗, and therefore preserves the
subsheaf V αM

∣∣
∆∗

, and so we get m = t−k(tkm) ∈ V αM.

Since V αM is a coherent O∆-module, it follows that F = M
∣∣
∆∗

is coherent

over O∆∗ . The action by ∂t can be viewed as a connection ∇ : F → Ω1
∆∗ ⊗O∆∗ F

that satisfies the Leibniz rule. Now Lemma 4.3 implies that F is locally free. �

It particular, the set of points whereM is singular, meaning not a vector bundle
with connection, is discrete. This also implies that M is holonomic: its character-
istic variety in the cotangent bundle T ∗X is 1-dimensional, because it is contained
in the union of the zero section and the contangent spaces at the singular points
of M. Each singular point of M is a regular singularity, because MU is generated
by the coherent OU -module V −1M which is preserved by the operator t∂t. The
converse is a theorem by Masaki Kashiwara.

Example 20.2. Suppose thatMU is a vector bundle with connection. In that case,
the V-filtration is just the filtration by powers of t, with V kMU = tkMU for all
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k ∈ N. The formula for arbitrary α ∈ R would be

V αMU = tmax(dαe,0)MU .

You should check that this satisfies all the conditions in the definition. Note that

gr0
V MU = V 0MU/V

>0MU =MU/tMU

is just the fiber of the MU at the origin.

The next set of conditions has to do with how the filtration F•MU = F•M
∣∣
U

on the D-module interacts with the V-filtration. This is needed because we want
F•M to reflect some of the properties of the D-module. For every α ∈ R, we get
an induced filtration

F•V
α = F•MU ∩ V αMU

on the coherent OU -module V α = V αMU , as well as an induced filtration

F• grαV =
F•MU ∩ V αMU + V >αMU

V >αMU

on the finite-dimensional vector space grαV = V α/V >α. We will say that the filtra-
tion F•M respects the local V-filtrations if

t : FkV
α → FkV

α+1

is an isomorphism for α > −1 and k ∈ Z, and if

∂t : Fk grαV → Fk+1 grα−1
V

is an isomorphism for α < 0 and k ∈ Z. Both mappings are isomorphisms without
the filtration; the condition is that they are actually filtered isomorphisms.

Example 20.3. Here is one example how these conditions force the filtration F•M
to respect the properties M. Suppose that M is a vector bundle with connection.
I claim that each FkM is then necessarily a subbundle of M. Clearly, FkM⊆M
is torsion-free, hence locally free (because dimX = 1); the point is to show that
the subquotients grFk M = FkM/Fk−1M are also locally free. For that, it suffices
to show that the stalk at each point x ∈ X is torsion-free.

Fix a point x ∈ X. After replacing M by its restriction to some open neighbor-
hood U , we can assume that M is a vector bundle with connection on ∆. Recall
that V jM = tjM for every j ∈ N. The condition that F•M respects the local
V-filtrations therefore amounts to the identity

FkM∩ tM = t(FkM),

as subsheaves ofM. We can use this to show that grFk M is torsion-free. Consider
the commutative diagram

0 Fk−1M FkM grFk M 0

0 Fk−1M FkM grFk M 0.

t t t

Since Fk−1M ∩ t(FkM) = t(Fk−1M), a simple diagram chase shows that the
vertical arrow t : grFk M→ grFk M is injective. But this says exactly that the stalk
of grFk M at the origin is torsion-free, proving the claim.

Exercise 20.2. Suppose thatM is the D∆-module H ⊗C C[∂t], where H is a finite-
dimensional vector space. Show that if F•M respects the local V-filtrations, then

FkM =

∞∑

j=0

Fk−1−jH ⊗ ∂jt

for a unique filtration F•H.
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Now let us discuss what additional structure the vector space grαV has. From the
fact that t∂t − α is nilpotent on grαV , it follows that

t : grα−1
V → grαV and ∂t : grαV → grα−1

V

are isomorphisms as long as α 6= 0. Therefore we only need to consider grαV in the
range −1 ≤ α ≤ 0. The nilpotent operator N = t∂t − α has a monodromy weight
filtration, which we denote by the symbol W• grαV . From the distribution-valued
sesquilinear pairing hM, one can also construct an induced hermitian pairing

hα : grαV ⊗C grαV → C;

this takes some work, and so we are going to leave this point to Wednesday. Right
now, we are only going to consider one special case.

Example 20.4. Suppose that M is a vector bundle with connection. I claim that
any sesquilinear pairing hM : M⊗CM → DbX actually takes values in the sheaf
of smooth functions C∞X . This is a local problem, and so we may assume that M
is a vector bundle with connection on ∆. If r denotes the rank of the bundle, we
can then find a trivialization by flat sections m1, . . . ,mr; in terms of the D-module
structure, this means that ∂tmj = 0. The sesquilinearity of the pairing gives

∂thM(mj ,mk) = hM(∂tmj ,mk) = 0,

∂thM(mj ,mk) = hM(mj , ∂tmk) = 0.

It follows that hM(mj ,mk) is (the distribution defined by) a constant function, and
in particular smooth. From this, it is easy to deduce that hM takes values in the
sheaf of smooth functions.

In all the examples from last week,
⊕

`∈Z
grW` grαV

was always a polarized Hodge-Lefschetz structure of some weight, and so we make
this behavior part of the definition of a polarized Hodge module.

Definition 20.5. Let X be a Riemann surface, and let (M, F•M, hM) be a filtered
DX -module with a sesquilinear pairing. This is called a polarized Hodge module of
weight w if the following four conditions are satisfied:

(a) The D-module M admits a local V-filtration at every point x ∈ X.
(b) The filtration F•M respects the local V-filtrations.
(c) For each α ∈ (−1, 0], the graded vector space

⊕

`∈Z
grW` grαV MU ,

with the filtration induced by F• grαV , the pairing induced by hα, and the
sl2(C)-action induced by N = t∂t−α, is a polarized Hodge-Lefschetz struc-
ture of central weight w − 1.

(d) For α = −1, the graded vector space
⊕

`∈Z
grW` grαV MU ,

with the filtration induced by F•+1 grαV , the pairing induced by hα, and
the sl2(C)-action induced by N = t∂t − α, is a polarized Hodge-Lefschetz
structure of central weight w.

The reason for separating α = −1 is to make the same definition work for all the
different examples from last week. Let us go through the examples one by one, to
see how this works in practice.
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Example 20.6. Suppose thatM is a vector bundle with connection. We have already
shown that each FkM is a subbundle, and that the pairing hM is actually a flat
pairing with values in the sheaf C∞X . Moreover, the local V-filtration at a point
x ∈ X is the filtration by powers of t, and so grαV is nonzero only for α ∈ N, and
gr0
V is the fiber of the vector bundle at the point x, with N = t∂t acting trivially.

It is easy to see that each subspace Fk gr0
V is just the fiber of the subbundle FkM

at x, and so the condition in (c) is saying that we get a polarized Hodge structure
of weight w − 1. So in this case, our polarized Hodge module of weight w is just a
polarized variation of Hodge structure of weight w − 1.

Example 20.7. Suppose that H is a polarized Hodge structure of weight n, with
Hodge filtration F•H = F−•H. Last time, we definedM = H ⊗C C[∂t], which is a
D-module supported on the origin in ∆, with filtration

FkM =

∞∑

j=0

F k−1−jH ⊗ ∂jt .

Let us see that this is a polarized Hodge module of weight n. We have gr−1
V M∼= H,

with N = t∂t + 1 acting trivially; moreover, grαV M = 0 for −1 < α ≤ 0. Since the

two shifts cancel each other out, the filtration F•+1 gr−1
V is exactly F•H, and so the

condition in (d) is saying that H should be a polarized Hodge structure of weight
n, which is true.

Example 20.8. Let V be a polarized variation of Hodge structure of weight n on
the punctured disk ∆∗. Last week, we defined M = D∆ · Ṽ >−1, with filtration

FkM =

∞∑

j=0

∂jt · Fk−jṼ >−1.

This is a polarized Hodge module on ∆ of weight n + 1. Indeed, we showed last
week that the condition in (c) holds as a consequence of Schmid’s theorems, and
that the condition in (d) follows from the vanishing cycle lemma.
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